Biomimetic Ca-P coatings incorporating bisphosphonates produced on starch-based degradable biomaterials.

نویسندگان

  • A L Oliveira
  • A J Pedro
  • C Saiz Arroyo
  • J F Mano
  • G Rodriguez
  • J San Roman
  • R L Reis
چکیده

In this study, sodium clodronate, a well-known therapeutic agent from the family of bisphosphonates (BPs), is incorporated in a biomimetic calcium phosphate (CaP) coating, previously formed on the surface of a starch-based biomaterial by a sodium silicate methodology, as a strategy to develop a site-specific drug delivery system for bone tissue regeneration applications. The effects on the resulting CaP coatings were evaluated in terms of morphology, chemistry, and structure. The dissolution of Ca and P from the coating and the release profiles of sodium clodronate was also assessed. As a preliminary approach, this first study also aimed at evaluating the effects of this BP on the viability of a human osteoblastic cell line since there is still little information available on the interaction between BPs and this type of cells. Sodium clodronate was successfully incorporated, at different doses, in the structure of a biomimetic CaP layer previously formed by a sodium silicate process. This type of BPs had a stimulatory effect on osteoblastic activity, particularly at the specific concentration of 0.32 mg/mL. It is foreseen that these coatings can, for instances, be produced on the surface of degradable polymers and then used for regulating the equilibrium on osteoblastic/osteoclastic activity, leading to a controlled regenerative effect at the interface between the biomaterial and bone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Bioactivated Interfacial Behavior of the Fluoridated Hydroxyapatite-Coated Mg-Zn Alloy in Cell Culture Environments

A partially fluorine substituted hydroxyapatite- (FHA-) coated Mg-Zn alloy was prepared to investigate the interfacial behavior of degradable Mg-based biomaterials with degradable bioactive coatings in a cell culture environment. Peaks from the results of X-ray diffraction (XRD) were characterized and compared before and after cell culture. It was found that Ca-P, including poorly crystalline i...

متن کامل

Strontium-substituted apatite coating grown on Ti6Al4V substrate through biomimetic synthesis.

During the last few years Strontium has been shown to have beneficial effects when incorporated at certain doses in bone by stimulating bone formation. It is believed that its presence locally at the interface between an implant and bone will enhance osteointegration and therefore, ensure the longevity of a joint prosthesis. In this study we explore the possibility of incorporating Sr into nano...

متن کامل

Plasma-sprayed calcium phosphate particles with high bioactivity and their use in bioactive scaffolds.

Highly crystalline feedstock hydroxyapatite (HA) particles with irregular shapes were spheroidized by plasma spraying them onto the surface of ice blocks or into water. The spherical Ca-P particles thus produced contained various amounts of the amorphous phase which were controlled by the stand-off distance between the spray nozzle and the surface of ice blocks or waiter. The smooth surface mor...

متن کامل

Surface Activation of NiTi Alloy by Using Electrochemical Process for Biomimetic Deposition of Hydroxyapatite Coating (TECHNICAL NOTE)

Electrochemical depositions of calcium phosphate (Ca-P) film on NiTi alloy in concentrated simulated body flood (SBF×5) were carried out by cathodic polarization. The Ca-P layer was successfully deposited on Ni-Ti alloy substrate under 10mA/cm2 current density for 2 hours at room temperature. Then, in order to investigate the bioactivity of the pre-calcified samples, they were immersed in SBF f...

متن کامل

Biomimetic Strategies for Bone Repair and Regeneration

The osseointegration rate of implants is related to their composition and surface roughness. Implant roughness favors both bone anchoring and biomechanical stability. Osteoconductive calcium phosphate (Ca-P) coatings promote bone healing and apposition, leading to the rapid biological fixation of implants. It has been clearly shown in many publications that Ca-P coating accelerates bone formati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part B, Applied biomaterials

دوره 92 1  شماره 

صفحات  -

تاریخ انتشار 2010